On-Off Direction-Selective Ganglion Cell

From Eyewire
Revision as of 02:38, 1 May 2012 by (Talk) (Models)

Jump to: navigation, search
Reconstructed by Omni Desktop from Helmstaedter's skeleton[1]

Direction selective (DS) cells in the retina are neurons that respond differentially to the direction of a visual stimulus. The term is used to describe a group of neurons that preferrentially "gives a vigorous discharge of impulses when a (bright) stimulus object is moved through its receptive field in one direction" [2]. There are three known types of DS cells in the vertebrate retina of the mouse, ON/OFF DS ganglion cells, ON DS Ganglion Cells (which respond to the leading edge of a bright stimulus) and OFF DS Ganglion Cells (which respond only to the trailing edge of a bright stimulus). Each has a distinctive physiology and anatomy[3]. The rest of this page will only apply to ON/OFF DS Ganglion Cells.


ON/OFF DS ganglion cells act as local motion detectors. They fire at the onset and offset of a bright stimulus (a light source). If a stimulus is moving in the direction of the cell’s preference, it will fire at the leading and the trailing edge.

The classical receptive field of the ON–OFF DSGC exhibits center-surround structure, with the size of the receptive field center matching well with its dendritic diameter [6–8]. When presented with a moving bar visual stimulus, both the ON and OFF components of the spike response are direction-selective over a wide range of movement velocities [2]. Furthermore, motion stimuli restricted to a small fraction (<20% in rabbit) of the receptive field can produce directional spiking of ON–OFF DSGCs, indicating that direction-selective mechanisms are present in local dendritic computational subunits that repeat in an array over the DSGC dendritic arbor [4].

The direction in which a set of neurons respond most strongly to is their “preferred direction.” In contrast, they do not respond at all to the opposite direction, “null direction.” The preferred direction is not dependent on the stimulus- that is, regardless of the stimulus’ size, shape, or color, the neurons respond when it is moving in their preferred direction, and do not respond if it is moving in the null direction.

ON/OFF DS ganglion cells can be divided into 4 subtypes differing in their directional preference, ventral, dorsal, nasal, or temporal. The cells of different subtypes also differ in their dendritic structure and synaptic targets in the brain.

Moving visual stimuli that crossed the cell’s receptive field elicited strong spiking when moving in a particular ‘preferred’ direction but little or no response when moving in the opposite ‘null’ direction.



The anatomy of ON/OFF cells is such that the dendrites extend to two sublaminae of the inner plexiform layer and make synapses with bipolar and amacrine cells. They have four subtypes, each with own preference for direction. Each subtype of ON/OFF DSGCs has differences in dendritic patterns and axonal projections to the brain. These differences indicate that outputs from different subtypes may wire to different parts of the brain [5].

The colored objects in panel a are six DSGCs reconstructed by the researchers. The circles are representations of the cell bodies, and the lines are "skeletons" of the dendrites. Each DSGC is said to be "bistratified," which means that its dendrites branch out in two sublayers ("strata") of the IPL. The total number of strata in the IPL is estimated to be around ten. A view of the bottom of the sandwich (panel b) shows the branching of the DSGC dendrites.

Reconstructed ganglion and amacrine cells.



Error creating thumbnail: Unable to save thumbnail to destination
Image of an On-Off Direction-Selective Ganglion Cell[6].


File:DSGC Brigmann.jpg
Cells and synapses reconstructed from serial block face electron microscopy data. A single starburst amacrine cell (yellow, note synaptic varicosities) and two direction-selective ganglion cells (green). Even though there is substantial dendritic overlap with both cells, all connections (magenta) go to the right ganglion cell. ©Kevin Briggman. New microscope decodes complex eye circuitry: Retinal ganglion cells can recognise directions thanks to amacrine cells[1]

Error creating thumbnail: Unable to save thumbnail to destination

Connections to SAC


As described above, ON/OFF DS ganglion cells can be divided into 4 subtypes differing in their directional preference, ventral, dorsal, nasal, or temporal. Recent research has identified markers for distinguishing between the different subtypes, and for separating ON/OFF DSGCs from other retinal ganglion cells. These markers are independent of experience, and suggest a method for how these cells obtain different inputs [5].

Recent research has lead to the development of transgenic mouse lines that selectively mark ON/OFF DSGCs that prefer ventral or nasal motion and another line that marks ventral and dorsal preferring DSGCs. These lines were used to identify cell surface molecules (including Cadherin 6, CollagenXXV1, and Matrix metalloprotease 17), that allow each of the four types of ON/OFF DSGCs to be differentiated. A neuropeptide, CART (cocaine and amphetamine regulated transcript) has been found to differentiate ON/OFF DSGCs from all other retinal ganglion cells. Strikingly, these patterns of molecular differentiation occur before animal eye-opening, and demonstrate that these differences are experience-independent. Therefore, the molecular differences may help to explain the differing functionality between subtypes [5].

Figure showing how ON/OFF DSGCs can be distinguished from other RGCs. As described in the text, this is accomplished using CART; a careful morphological analysis confirms that this marker correctly identifies the ON/OFF DSGCs with no false positives. [5]


File:Reichardt model.png
Graphic explaining the Reichardt-Hassenstain model [3]

The firing pattern of On-Off Direction-Selective Ganglion cells is time-dependent and is supported by the Reichardt- Hassenstain model, which detects spatiotemporal correlation between two adjacent cells [3].

As applied to the visual system, this model considers the processed stimulus(i.e., light) inputs to two adjacent cells. After a time delay, each delayed input is multiplied by the original signal from the other cell. The resulting signals are subtracted, and the positive outcome indicates the preferred direction [3].

This behavior was validated in the visual system using calcium imaging in the fly [7]. However, this model correspondence has only been completed at a high-level (input-output), rather than at an anatomical or physiological level (Borst, Alexander, and Thomas Euler. “Seeing Things in Motion: Models, Circuits, and Mechanisms.” Neuron 71.6 (2011) : 974-994.).


Direction Selective units were first explored in cats by Hubel and Wiesel in 1959. Levick and Barlow performed many of the seminal early experiments related to direction selectivity during the 1960s using rabbit retina [2]. In these experiments, they measured action potentials generated from a black-white grating with a small slit [3]. Many additional experiments have been performed during the past fifty years in organisms as diverse as the turtle (e.g., Marchiafava 1979) and the mouse (Briggman 2011).

Open questions / status / relevance to eyewire

Cells will be available for tracing in Eyewire, although these cells are not currently available (March 2012). See http://wiki.eyewire.org/wiki/E2198

Reading List

K. L. Briggman, M. Helmstaedter, and W. Denk, €œWiring specificity in the direction-selectivity circuit of the retina., Nature, vol. 471, no. 7337, pp. 183-8, Mar. 2011.

A. Borst and T. Euler, €œReview Seeing Things in Motion : Models, Circuits and Mechanisms,€ Neuron, vol. 71, no. 6, pp. 974-994, 2011.

D. I. Vaney, B. Sivyer, and W. R. Taylor, Direction selectivity in the retina: symmetry and asymmetry in structure and function,€ Nature reviews. Neuroscience, vol. 13, no. 3, pp. 194-208, Jan. 2012.

W. R. Levick and H. B. Barlow, €œThe Mechanism of Directionally Selective Units in Rabbit's Retina, pp. 477-504, 1965.


  1. 1.0 1.1 Script error: No such module "Citation/CS1". (PDF Download)
  2. 2.0 2.1 2.2 Script error: No such module "Citation/CS1". (PDF Download)
  3. 3.0 3.1 3.2 3.3 3.4 "Motion Sensing in Vision." Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/wiki/Motion_Sensing_in_Vision (Accessed April 02, 2012).
  4. Script error: No such module "Citation/CS1". (PDF Download)
  5. 5.0 5.1 5.2 5.3 Script error: No such module "Citation/CS1". (PDF Download)
  6. Script error: No such module "Citation/CS1". (PDF Download)
  7. Script error: No such module "Citation/CS1". (PDF Download)