Difference between revisions of "Amacrine Cell/ko"

From Eyewire
Jump to: navigation, search
Line 29: Line 29:
 
성화상 무축삭 세포의 Type a와 b간의 구조적 차이. Note (A) 수지상 가지 직경의 차이, (B) 가지뻗음의 일정함 및 (C,D) 계층화에 주의하세요.[5]
 
성화상 무축삭 세포의 Type a와 b간의 구조적 차이. Note (A) 수지상 가지 직경의 차이, (B) 가지뻗음의 일정함 및 (C,D) 계층화에 주의하세요.[5]
  
성화상 무축삭 세포는 매우 특정한 구조를 가지고 있습니다. 이들 세포의 묘사적인 이름은 특징적인 “별모양 광채”같은 수지상 가지들이 뻗은 모습을 볼 수 있는 이들 세포 종류의 초기 영상에서 유래한 것입니다. 무축삭 세포는 Type a와 b, 두 가지 종류가 있습니다.[4] 다수의 세포 범주에서 서로 다른 종류를 분류하는 것은 정확하지 않고 다소 주관적일 수 있습니다. 그러나 성화상 무축삭 세포의 경우에는 두 가지 다른 종류들이 분포 위치, 형태 및 연결에서 확연한 차이를 보이며 이러한 구조적 차이들이 이들의 기능에 있어서도 주요 역할을 합니다. 실제로, 성화상 무축삭 세포를 망막에서 아세틸콜린을 분비하는 세포로 확인할 수 있게 도와준 것도 다른 종류간 차별화된 계층화였습니다.[5]
+
==== 위치 ====
 +
a. 계층화(Stratification)
 +
다른 종류의 성화상 무축삭 세포간 확연히 구분되는 계층화는, 성화상 무축삭 세포가 망막 아세틸콜린의 근원이라는 것을 확인하는 데 핵심이 되었습니다. 1970년대 말에 아세틸콜린이 망막에 존재하는 두 가지 다른 종류의 세포들에 의해 생성된다는 것이 알려졌습니다. 이들 아세틸콜린 합성 세포들은 잠정적으로 무축삭 세포로 여겨졌는데 그 이유는 이들 세포의 약 절반 가량이, 망막의 내망상층(the inner plexiform layer, IPL)을 옆에 끼고, 그들의 세포체를 보통 무축삭 세포가 발견되는 위치에 가지고 있었기 때문입니다.[6] 이들 세포는 IPL 아층판 a 에서 가지를 뻗기 때문에 type a(OFF) 성화상 무축삭 세포라고 불렀습니다. 나머지 절반은 그들의 세포체가 신경절 세포 층(ganglion cell lyer, GCL)에 있으나 신경절 세포처럼 보이지 않았습니다. 이들 세포의 세포체가 신경절 세포 층에 “잘못 놓여”있고 IPL 아층판 b에서 가지를 뻗었기 때문에 이들 세포는 type b(ON) 또는 잘못 놓인 성화상 무축삭 세포라고 불렀습니다.[5] 성화상 무축삭 세포는 그 이전에 이미 동일한 분포 양상을 보인 바 있었으며 추가적인 연구를 통해 성화상 무축삭 세포가 실제로 망막의 콜린성 세포라는 것이 확인되었습니다.
  
성화상 무축삭 세포의 Type a와 b간의 구조적 차이. Note (A) 수지상 가지 직경의 차이, (B) 가지뻗음의 일정함 및 (C,D) 계층화에 주의하세요.[5]
+
[[파일:SAC_Tiling.jpg|thumb|center|성화상 무축삭 세포의 타일링(Tiling)[2]]]
 +
 
 +
 
 +
b. 타일링(Tiling)
 +
성화상 무축삭 세포 분포의 또 다른 중요한 측면은 인접한 성화상 무축삭 세포들의 가지들 사이에 겹침(종종 tiling 겹칩)이라는 높은 수준의 겹침이 있다는 것입니다.[7] 발생과정에서, 많은 종류 세포의 수상돌기들은 다른 세포의 수상돌기들과 상호작용을 할 때 다른 수상돌기를 감지해 더 이상 자라는 것을 멈추게 됩니다. 이러한 결과로 겹치지 않는 수지상 가지들의 정확한 분리가 가능합니다. 이러한 겹치지 않는 시스템이 발생하는 경우, 타일링 팩터(tiling factor)가 1이 되는데 그 뜻은 모든 세포에 의해 덮인 면적의 합은 총면적과 같다는 것을 말합니다. 다수의 무축삭 세포 종류들은 tiling factor 1을 가집니다. 그러나 성화상 무축삭 세포는 tiling factor가 100이 될 수도 있으며 이것은 수지상 가지들간의 겹침이 매우 심해서 세포에 의해 덮인 면적을 모두 합하면 총면적의 100배에 이른다는 것을 뜻합니다. 높은 tiling factor는 높은 편심(eccentricity)이라고 불리기도 합니다. 오른편의 그림에서, 각각의 색깔은 선호하는 방향을 나타내며 속이 채워진 원은 각 성화상 무축삭 세포의 세포체를 나타냅니다. 인접한 세포들간의 겹침 정도에 주의하세요.
  
 
===Shape===
 
===Shape===

Revision as of 16:48, 30 December 2015

성화상 무축삭 세포(Starburst amacrine cells, SAC 또는 SBAC)는 이름이 보여주듯 수지상 가지(dendritic arbor)의 모양이 “별 모양의 광채(starburst)”를 닮은 특징에 의해 일차적으로 확인할 수 있는 망막의 무축삭 세포의 일종입니다. 성화상 무축삭 세포의 두 가지 중요한 역할이 밝혀진 바 있습니다. 성화상 무축삭 세포는 (1) 방향 선택성의 계산에 중요한 역할을 하며 또한 (2) 망막의 발생에 중요한 기능을 합니다. 다른 계층화, 형태, 연결 및 방향 선택성에서의 역할에 따라 명확하게 정의된 두 종류의 성화상 무축삭 세포들이 있습니다.

There is no clear distinction between dendrites and axons in the processes of most of the amacrine cells, though they are often referred to as dendrites in general.

Like horizontal cells, amacrine cells work laterally affecting the output from bipolar cells, however, their tasks are often more specialized. Each type of amacrine cell connects with a particular type of bipolar cell, and generally has a particular type of neurotransmitter. For example, one such population, AII, 'piggybacks' rod bipolar cells onto the cone bipolar circuitry. It connects rod bipolar cell output with cone bipolar cell input, and from there the signal can travel to the respective ganglion cells.
Starburst amacrine cell reconstructed in Eyewire

Most are inhibitory using either GABA or glycine as neurotransmitters.


생리(Physiology)

File:Receptive field.png
Receptive fields illustrated

시각 반응 성질

일반적으로 말하면, 성화상 무축삭 세포는 세포체(soma, cell body)로부터 원거리의 수상돌기(dendrites)를 향해 움직이는 시각적 자극(원심성 또는CF운동)에만 반응을 하고 반대방향으로 움직이는 시각적 반응(구심성 또는 CP 운동)에는 반응을 하지 않습니다. 성화상 무축삭 세포의 이러한 성질은 2 광자 영상법에 의해 확립되었습니다. 아래의 그림은 성화상 무축삭 세포의 시각 반응을 도식화한 것을 보여주고 있습니다. (A) 원거리의 수상돌기에 빛을 쏘여 주었을 때의 반응. (B) 근거리에 빛을 반짝 쏘여주고 원거리에서 빛을 반짝 쏘여주어 원심성 운동을 흉내냈을 때의 반응. (C) 원거리에 빛을 쏘여주고 다시 더 먼 원거리에 빛을 쏘여주어 구심성 운동을 흉내냈을 때의 반응. 성화상 무축삭 세포는 원심성 방향의 운동에 가장 반응이 높다는 것에 주의를 기울여주십시오.

As detailed below, starburst amacrine cells (SAC) exhibit very selective visual response properties that have to do with a stimulus' direction with respect to the SAC's dendrites.

세포 생물물리

성화상 무축삭 세포는 망막의 세포 중 유일하게 두 종류의 신경전달물질을 내는 세포입니다. 이들 세포는 보통 억제성 신경전달물질인 GABA와 흥분성 신경전달물질인 아세틸콜린(Ach)을 분비합니다. 이들 신경전달물질의 분비는 단일시냅스성이며 칼슘에 의해 조절됩니다. 그러나 이들 두 가지 신경전달물질이 동시에 분비되지는 않는 다는 것 또한 알려져 있습니다. 이들 두 가지 신경전달물질의 분비 성질은 완충액의 변화, 특정 칼슘 억제제, 및 세포 외 농도에 의해 다르게 영향을 받게 됩니다.

Starburst amacrine cells exhibit very strange biophysics. Distinct SAC dendrites are selectively activated by visual stimuli moving centrifugally with respect to those distinct dendrites. SAC dendrite-specific direction selectivity is thought to underlie the direction selectivity of on/off direction-selective ganglion cells[1], but the mechanism by which this direction selectivity is generated in SAC dendrites remains unknown.

해부학적 구조(Anatomy)

성화상 무축삭 세포는 매우 특정한 구조를 가지고 있습니다. 이들 세포의 묘사적인 이름은 특징적인 “별모양 광채”같은 수지상 가지들이 뻗은 모습을 볼 수 있는 이들 세포 종류의 초기 영상에서 유래한 것입니다. 무축삭 세포는 Type a와 b, 두 가지 종류가 있습니다.[4] 다수의 세포 범주에서 서로 다른 종류를 분류하는 것은 정확하지 않고 다소 주관적일 수 있습니다. 그러나 성화상 무축삭 세포의 경우에는 두 가지 다른 종류들이 분포 위치, 형태 및 연결에서 확연한 차이를 보이며 이러한 구조적 차이들이 이들의 기능에 있어서도 주요 역할을 합니다. 실제로, 성화상 무축삭 세포를 망막에서 아세틸콜린을 분비하는 세포로 확인할 수 있게 도와준 것도 다른 종류간 차별화된 계층화였습니다.[5]

성화상 무축삭 세포의 Type a와 b간의 구조적 차이. Note (A) 수지상 가지 직경의 차이, (B) 가지뻗음의 일정함 및 (C,D) 계층화에 주의하세요.[5]

위치

a. 계층화(Stratification) 다른 종류의 성화상 무축삭 세포간 확연히 구분되는 계층화는, 성화상 무축삭 세포가 망막 아세틸콜린의 근원이라는 것을 확인하는 데 핵심이 되었습니다. 1970년대 말에 아세틸콜린이 망막에 존재하는 두 가지 다른 종류의 세포들에 의해 생성된다는 것이 알려졌습니다. 이들 아세틸콜린 합성 세포들은 잠정적으로 무축삭 세포로 여겨졌는데 그 이유는 이들 세포의 약 절반 가량이, 망막의 내망상층(the inner plexiform layer, IPL)을 옆에 끼고, 그들의 세포체를 보통 무축삭 세포가 발견되는 위치에 가지고 있었기 때문입니다.[6] 이들 세포는 IPL 아층판 a 에서 가지를 뻗기 때문에 type a(OFF) 성화상 무축삭 세포라고 불렀습니다. 나머지 절반은 그들의 세포체가 신경절 세포 층(ganglion cell lyer, GCL)에 있으나 신경절 세포처럼 보이지 않았습니다. 이들 세포의 세포체가 신경절 세포 층에 “잘못 놓여”있고 IPL 아층판 b에서 가지를 뻗었기 때문에 이들 세포는 type b(ON) 또는 잘못 놓인 성화상 무축삭 세포라고 불렀습니다.[5] 성화상 무축삭 세포는 그 이전에 이미 동일한 분포 양상을 보인 바 있었으며 추가적인 연구를 통해 성화상 무축삭 세포가 실제로 망막의 콜린성 세포라는 것이 확인되었습니다.

thumb|center|성화상 무축삭 세포의 타일링(Tiling)[2]


b. 타일링(Tiling) 성화상 무축삭 세포 분포의 또 다른 중요한 측면은 인접한 성화상 무축삭 세포들의 가지들 사이에 겹침(종종 tiling 겹칩)이라는 높은 수준의 겹침이 있다는 것입니다.[7] 발생과정에서, 많은 종류 세포의 수상돌기들은 다른 세포의 수상돌기들과 상호작용을 할 때 다른 수상돌기를 감지해 더 이상 자라는 것을 멈추게 됩니다. 이러한 결과로 겹치지 않는 수지상 가지들의 정확한 분리가 가능합니다. 이러한 겹치지 않는 시스템이 발생하는 경우, 타일링 팩터(tiling factor)가 1이 되는데 그 뜻은 모든 세포에 의해 덮인 면적의 합은 총면적과 같다는 것을 말합니다. 다수의 무축삭 세포 종류들은 tiling factor 1을 가집니다. 그러나 성화상 무축삭 세포는 tiling factor가 100이 될 수도 있으며 이것은 수지상 가지들간의 겹침이 매우 심해서 세포에 의해 덮인 면적을 모두 합하면 총면적의 100배에 이른다는 것을 뜻합니다. 높은 tiling factor는 높은 편심(eccentricity)이라고 불리기도 합니다. 오른편의 그림에서, 각각의 색깔은 선호하는 방향을 나타내며 속이 채워진 원은 각 성화상 무축삭 세포의 세포체를 나타냅니다. 인접한 세포들간의 겹침 정도에 주의하세요.

Shape

Two amacrine cells with distinctive shapes. They can be easily mapped to their respective class in the catalog.[2]

Amacrine cells send projections from their cell bodies into the inner plexiform layer. These projections arborize differently for different subtypes of amacrine cells. Amacrine cells have these projections distributed roughly circularly in the inner plexiform layer, though some subtypes arborize asymmetrically. Most amacrine cells can be classified according to the diameter of their projection arborization: "narrow-field" cells have arbors less than 125 µm in diameter, "medium-field" cell arbors range from 125 to 400 µm in diameter, and "wide-field" cell arbors are larger than 400 µm.[2]

Their overall shapes alone are enough to serve as criterion for the classification.

Connections

Amacrine cells are postsynaptic targets of bipolar cells; these bipolar-to-amacrine cell synapses occur in the inner plexiform layer and are thought to be excitatory. Amacrine cells have their postsynaptic targets in the inner plexiform layer as well. Amacrine cell dendrites are known to synapse onto ganglion cell neurites in the IPL, mediating "antagonistic inputs from bipolar cells in the ganglion cell's surround." [3] These synapses are thought to be inhibitory.; this suggests that amacrine cells serve to regulate the output of bipolar cells in a negative-feedback loop fashion, and in fact it is thought that these amacrine-to-bipolar cell synapses are inhibitory. Further, "amacrine processes are also seen to contact other amacrine processes" in the IPL. These amacrine-to-amacrine cell synapses, interestingly enough, are thought to be excitatory. Amacrine cells are also known to form "reciprocal synapses" onto the bipolar cells that synapse onto them[4] Thus, amacrine cells form synapses onto bipolar cells, ganglion cells, and other amacrine cells, all in the inner plexiform layer.


A few types of amacrine cells are associated with their respective functions and with corresponding ganglion cells. For example, starburst amacrine cells are known to make synapses onto on/off direction-selective ganglion cells (On/Off DSGCs) [5], and wide-field (WF) amacrine cells, also known as polyaxonal amacrine cells, are considered to be associated with object motion sensitive ganglion cells either directly or indirectly via bipolar cells [6].

Molecules

Molecular markers

There exist several molecular markers for amacrine cells, including Pax6, Tcfap2b, Gad1, and GlyT1. However, no markers exclusively expressed in amacrine cells are known to exist, and there exist "far fewer molecular markers [for amacrine cells] than known morphological types" of amacrine cells.[7]

Antibodies against choline acetyltransferase (ChAT), the acetylcholine biosynthetic enzyme, are useful in staining amacrine cells in the retina, as it has been thought for some time that amacrine cells are the only cholinergic retinal neurons. However, at least one study has shown that there may exist cholinergic ganglion cells through staining against an alternative splice variant of ChAT mRNA in rat retina.[8]

Staining the retina against tyrosine hydroxylase (TH), a key enzyme in the dopamine biosynthetic pathway, reveals the dopaminergic amacrine cells.[9] It should be noted, though, that (nor)adrenergic cells also contain TH, and thus in order to isolate only dopaminergic cells, staining should also be carried out against dopamine β-hydroxylase and phenylethanolamine N-methyltransferase, enzymes found in the (nor)adrenaline biosynthetic pathways, but not in the dopamine pathway.[9]

Neurotransmitters

Most amacrine cells are inhibitory and secrete only GABA or glycine, though in total, amacrine cells as a class use eight different neurotransmitters[3], including acetylcholine, dopamine, and several neuropeptides, such as vasoactive intestinal peptide (VIP), substance P, and somatostatin.[10] A particular class of amacrine cells—the starburst amacrine cell—has been found to be both cholinergic and GABAergic.[11] According to retinal neuron expert Richard Masland, it appears that every amacrine cell is GABA- or glycinergic, with those amacrine cells that secrete other neurotransmitters secreting them concurrently with GABA or glycine.[10]

History

The first characterization of amacrine cells is often attributed to Santiago Ramón y Cajal. Using the Golgi method of staining neurons, he first saw these cells in the avian retina in the late 1880s, naming them "amacrine" cells ("amacrine" meaning "without axon" in Greek). Though he was the first to call them amacrine cells, he built on the earlier work of J. Müller, who had previously described "spongioblasts" in the retina that were likely the very same cells Ramón y Cajal later named "amacrine."[12]

Open questions/status/relevance to Eyewire

Open questions

Though it is more or less well-established how inhibitory amacrine cells function, it is less clear what functions non-GABAergic/glycinergic amacrine cells have in the retina. In particular, it is not well understood for which functions starburst amacrine cells require acetylcholine secretion or how starburst amacrine cells might use both GABA and acetylcholine in concert to accomplish certain fucntions. Starburst amacrine cells also exhibit very curious biophysics in that any given individual SAC dendrite is selectively activated by visual stimuli centrifugal with respect to that particular dendrite.[1] The mechanism for this selectivity remains unknown.

Also, as stated above, no amacrine cell-exclusive molecular markers are known to exist[7]; the discovery of such a marker would be incredibly beneficial to further amacrine cell research.

Status/relevance to Eyewire

Thus far, dozens of starburst amacrine cells have been reconstructed through Eyewire, as well as at least one AII amacrine cell.

References

  1. 1.0 1.1 Thomas Euler, Peter B. Detwiler & Winfried Denk (2002). Directionally selective calcium signals in dendrites of starburst amacrine cells Nature 418: 845-852
  2. Cite error: Invalid <ref> tag; no text was provided for refs named Masland_1998
  3. Cite error: Invalid <ref> tag; no text was provided for refs named Tessier
  4. J. E. Dowling & B. B. Boycott (1996) title=Organization of the Primate Retina: Electron Microscopy Proc. R. Soc. A 166 (1002): 80–111
  5. K. L. Briggman, M. Helmstaedter & W. Denk (2011)Wiring specificity in the direction-selectivity circuit of the retina Nature 471: 183-188. doi:10.1038/nature09818
  6. S. A. Baccus et al. (2008) A Retinal Circuit That Computes Object Motion J. Neurosci. 28 (27): 6807-6817 doi:10.1523/​JNEUROSCI.4206-07.2008
  7. 7.0 7.1 T. J. Cherry, J. M. Trimarchi, M. B. Stadler & C. L. Cepko (2009)Development and diversification of retinal amacrine interneurons at single cell resolution Proc. Natl. Acad. Sci. USA 106 (23): 9495–9500
  8. O. Yasuhara et al. (2003) Demonstration of Cholinergic Ganglion Cells in Rat Retina: Expression of an Alternative Splice Variant of Choline Acetyltransferase J. Neurosci. 23 (7): 2872–2881
  9. 9.0 9.1 Marc, Robert E. "Retinal Neurotransmitters." The Visual Neurosciences. Vol. 1. Cambridge: The MIT Press, 2003. 304-319.
  10. 10.0 10.1 Masland, R. H. Personal communication. April 6, 2012.
  11. D. M. O'Malley, J. H. Sandell & R. H. Masland (1992) Co-release of Acetylcholine and GABA by the Starburst Amacrine Cells J. Neurosci. 12 (4): 1394–1408
  12. H. Uchiyama & W. K. Stell (2005) Association amacrine cells of Ramón y Cajal: Rediscovery and reinterpretation Visual Neuroscience 22: 881—891